Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 105(3): 250-259, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38182431

RESUMO

Opioid analgesics are frequently associated with gastrointestinal side effects, including constipation, nausea, dysphagia, and reduced gastric motility. Though it has been shown that stimulation of opioid receptors expressed in enteric motor neurons contributes to opioid-induced constipation, it remains unclear whether activation of opioid receptors in gastric-projecting nodose ganglia neurons contributes to the reduction in gastric motility and emptying associated with opioid use. In the present study, whole-cell patch-clamp recordings were performed to determine the mechanism underlying opioid receptor-mediated modulation of Ca2+ currents in acutely isolated gastric vagal afferent neurons. Our results demonstrate that CaV2.2 channels provide the majority (71% ± 16%) of Ca2+ currents in gastric vagal afferent neurons. Furthermore, we found that application of oxycodone, U-50488, or deltorphin II on gastric nodose ganglia neurons inhibited Ca2+ currents through a voltage-dependent mechanism by coupling to the Gα i/o family of heterotrimeric G-proteins. Because previous studies have demonstrated that the nodose ganglia expresses low levels of δ-opioid receptors, we also determined the deltorphin II concentration-response relationship and assessed deltorphin-mediated Ca2+ current inhibition following exposure to the δ-opioid receptor antagonist ICI 174,864 (0.3 µM). The peak mean Ca2+ current inhibition following deltorphin II application was 47% ± 24% (EC50 = 302.6 nM), and exposure to ICI 174,864 blocked deltorphin II-mediated Ca2+ current inhibition (4% ± 4% versus 37% ± 20%). Together, our results suggest that analgesics targeting any opioid receptor subtype can modulate gastric vagal circuits. SIGNIFICANCE STATEMENT: This study demonstrated that in gastric nodose ganglia neurons, agonists targeting all three classical opioid receptor subtypes (µ, δ, and κ) inhibit voltage-gated Ca2+ channels in a voltage-dependent mechanism by coupling to Gαi/o. These findings suggest that analgesics targeting any opioid receptor subtype would modulate gastric vagal circuits responsible for regulating gastric reflexes.


Assuntos
Analgésicos Opioides , Receptores Opioides kappa , Humanos , Analgésicos Opioides/farmacologia , Receptores Opioides mu/fisiologia , Constipação Intestinal , Neurônios Aferentes , Receptores Opioides , Analgésicos/farmacologia
2.
Neurogastroenterol Motil ; 35(11): e14646, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37480186

RESUMO

BACKGROUND: Neurogenic bowel is a dysmotility disorder following spinal cord injury (SCI) that negatively impacts quality of life, social integration, and physical health. Colonic transit is directly modulated by the enteric nervous system. Interstitial Cells of Cajal (ICC) distributed throughout the small intestine and colon serve as specialized pacemaker cells, generating rhythmic electrical slow waves within intestinal smooth muscle, or serve as an interface between smooth muscle cells and enteric motor neurons of the myenteric plexus. Interstitial Cells of Cajal loss has been reported for other preclinical models of dysmotility, and our previous experimental SCI study provided evidence of reduced excitatory and inhibitory enteric neuronal count and smooth muscle neural control. METHODS: Immunohistochemistry for the ICC-specific marker c-Kit was utilized to examine neuromuscular remodeling of the distal colon in male and female rats with experimental SCI. KEY RESULTS: Myenteric plexus ICC (ICC-MP) exhibited increased cell counts 3 days following SCI in male rats, but did not significantly increase in females until 3 weeks after SCI. On average, ICC-MP total primary arborization length increased significantly in male rats at 3-day, 3-week, and 6-week time points, whereas in females, this increase occurred most frequently at 6 weeks post-SCI. Conversely, circular muscle ICC (ICC-CM) did not demonstrate post-SCI changes. CONCLUSIONS AND INFERENCES: These data demonstrate resiliency of the ICC-MP in neurogenic bowel following SCI, unlike seen in other related disease states. This plasticity underscores the need to further understand neuromuscular changes driving colonic dysmotility after SCI in order to advance therapeutic targets for neurogenic bowel treatment.


Assuntos
Sistema Nervoso Entérico , Intestino Neurogênico , Traumatismos da Medula Espinal , Ratos , Masculino , Feminino , Animais , Qualidade de Vida , Plexo Mientérico , Colo , Neurônios Motores , Traumatismos da Medula Espinal/complicações
3.
Neurotrauma Rep ; 3(1): 292-298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060457

RESUMO

Approximately two thirds of spinal cord injury (SCI) persons become overweight or obese. Obesity increases the risk of developing type 2 diabetes and limits self-help techniques. Weight-loss surgery (WLS), including vertical sleeve gastrectomy (VSG), is regarded as highly effective in the long-term treatment of obesity and remission of associated type 2 diabetes. Given the increased risk of obesity post-SCI, WLS offers an attractive intervention strategy. Alterations in the physiology of energy homeostasis after SCI necessitate that SCI persons should not be regarded as similar to able-bodied persons. Because of current knowledge gaps, it is unknown whether an obese phenotype with SCI will respond to WLS similarly to the neurally intact obese phenotype. Therefore, this study tested the hypothesis that the VSG procedure is well tolerated and effective in an animal model of high-thoracic (T3) SCI. In Wistar male rats, subsequent to a 2-week recovery period after T3-SCI, but not control laminectomy surgery, daily consumption of a high-fat diet (HFD; 60% kcal from fat) was elevated over 4 weeks preceding VSG. After a 2-week recovery period post-VSG, HFD consumption in T3-SCI rats over a 4-week monitoring period returned to levels comparable to control. Body weight was significantly reduced in T3-SCI rats and remained reduced whereas control rats regained body weight. Further, no adverse complications directly attributable to the VSG procedure were identified. Thus, this rodent model is a viable tool for addressing fundamental questions regarding the mechanisms leading to obesity post-SCI and the development of translational strategies.

4.
J Neurochem ; 119(5): 1029-40, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21923664

RESUMO

Diabetes is a major risk factor of stroke and is associated with increased frequency of stroke and a poorer prognosis for recovery. In earlier studies we have utilized type 2 diabetic mouse models of stroke and demonstrated that diabetic db/db and ob/ob mice experience larger infarct volumes and impaired recovery associated with greater infiltration of macrophage following hypoxic-ischemic (H/I) insult than their heterozygous non-diabetic db/+ and ob/+ littermates. To obtain a better understanding of the pathogenesis of the impaired recovery, we have investigated the role of matrix metalloproteases and their endogenous inhibitors in the breakdown of the blood-brain barrier (BBB) following H/I. Diabetic db/db mice showed a significant and more rapid increase in matrix metalloprotease (MMP)-9 mRNA, protein and gelatinolytic activity compared with db/+, which resulted in an increased degradation of occludin and collagen IV and subsequently, an increased BBB permeability and greater infiltration of neutrophils into the infarct area. The expression of the MMPs, especially in the db/+ mice, is preceded by an elevated expression of their endogenous tissue inhibitors of metalloproteases (TIMPs) 1, 2, and 3, whereas in the db/db mice, a lower expression of the TIMPs is associated with greater MMP 3 and 9 expression. These results suggest that an imbalance in the MMPs/TIMPs cascade in the diabetic mouse, particularly MMP-9, results in a greater neutrophil invasion, a compromised BBB and consequently a greater insult.


Assuntos
Barreira Hematoencefálica/enzimologia , Complicações do Diabetes/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Hipóxia-Isquemia Encefálica/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Recuperação de Função Fisiológica/genética , Acidente Vascular Cerebral/enzimologia , Animais , Barreira Hematoencefálica/fisiopatologia , Complicações do Diabetes/genética , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/genética , Masculino , Metaloproteinase 9 da Matriz/fisiologia , Camundongos , Camundongos Mutantes , Camundongos Obesos , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/genética , Regulação para Cima/genética
5.
Biochem Biophys Res Commun ; 412(4): 644-7, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21856283

RESUMO

Glucocorticoids are potent regulators of cell metabolism, and in part act through a receptor-based mechanism to alter the transcription of target genes. A plethora of studies have utilized the glucocorticoid receptor antagonist, RU-486, both in vivo and in vitro, to reverse or prevent hormone-induced alterations in gene transcription. However, although RU-486 potently blocks many of the functions of the receptor, it does not lower plasma concentrations of the hormone, and a biomarker for the effectiveness of RU-486 in blocking receptor activation is lacking. In the present study, we demonstrate glucocorticoid-induced changes in expression of a protein referred to as regulated in development and DNA damage response (REDD1) in a variety of mouse models of hypercortisolemia including stroke, type 2 diabetes, and stress induced by confinement. Notably REDD1 expression in skeletal muscle positively correlated with changes in corticosterone concentrations in all conditions. RU-486 had no effect on corticosterone concentrations, but strongly attenuated the stroke-, diabetes-, and stress-induced changes in REDD1 expression. Overall, the results of the present study suggest that changes in REDD1 expression in skeletal muscle represent an excellent surrogate biomarker for the efficacy of RU-486 treatment in repressing glucocorticoid action.


Assuntos
Biomarcadores Farmacológicos/metabolismo , Mifepristona/farmacologia , Músculo Esquelético/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Animais , Dano ao DNA , Glucocorticoides/antagonistas & inibidores , Masculino , Camundongos , Fatores de Transcrição/genética
6.
ASN Neuro ; 3(3): e00062, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21722095

RESUMO

Hypoxic preconditioning reprogrammes the brain's response to subsequent H/I (hypoxia-ischaemia) injury by enhancing neuroprotective mechanisms. Given that astrocytes normally support neuronal survival and function, the purpose of the present study was to test the hypothesis that a hypoxic preconditioning stimulus would activate an adaptive astrocytic response. We analysed several functional parameters 24 h after exposing rat pups to 3 h of systemic hypoxia (8% O2). Hypoxia increased neocortical astrocyte maturation as evidenced by the loss of GFAP (glial fibrillary acidic protein)-positive cells with radial morphologies and the acquisition of multipolar GFAP-positive cells. Interestingly, many of these astrocytes had nuclear S100B. Accompanying their differentiation, there was increased expression of GFAP, GS (glutamine synthetase), EAAT-1 (excitatory amino acid transporter-1; also known as GLAST), MCT-1 (monocarboxylate transporter-1) and ceruloplasmin. A subsequent H/I insult did not result in any further astrocyte activation. Some responses were cell autonomous, as levels of GS and MCT-1 increased subsequent to hypoxia in cultured forebrain astrocytes. In contrast, the expression of GFAP, GLAST and ceruloplasmin remained unaltered. Additional experiments utilized astrocytes exposed to exogenous dbcAMP (dibutyryl-cAMP), which mimicked several aspects of the preconditioning response, to determine whether activated astrocytes could protect neurons from subsequent excitotoxic injury. dbcAMP treatment increased GS and glutamate transporter expression and function, and as hypothesized, protected neurons from glutamate excitotoxicity. Taken altogether, these results indicate that a preconditioning stimulus causes the precocious differentiation of astrocytes and increases the acquisition of multiple astrocytic functions that will contribute to the neuroprotection conferred by a sublethal preconditioning stress.


Assuntos
Astrócitos/fisiologia , Diferenciação Celular/fisiologia , Hipóxia/metabolismo , Precondicionamento Isquêmico , Fármacos Neuroprotetores , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Células Cultivadas , Transportador 1 de Aminoácido Excitatório/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Ratos , Ratos Wistar
7.
J Cereb Blood Flow Metab ; 30(2): 352-60, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19861974

RESUMO

Diabetes is an increased risk factor for stroke and results in increased brain damage in experimental animals and humans. The precise mechanisms are unclear, but our earlier studies in the db/db mice suggested that the cerebral inflammatory response initiating recovery was both delayed and diminished in the diabetic mice compared with the nondiabetic db/+ mice. In this study, we investigated the actions of the peroxisome proliferator-activated receptor (PPAR)-gamma agonist darglitazone in treating diabetes and promoting recovery after a hypoxic-ischemic (H/I) insult in the diabetic ob/ob mouse. Male ob/+ and ob/ob mice received darglitazone (1 mg/kg) for 7 days before induction of H/I. Darglitazone restored euglycemia and normalized elevated corticosterone, triglycerides, and very-low-density lipoprotein levels. Darglitazone dramatically reduced the infarct size in the ob/ob mice at 24 h of recovery compared with the untreated group (30+/-13% to 3.3+/-1.6%, n=6 to 8) but did not show any significant effect in the ob/+ mice. Microglial and astrocytic activation monitored by cytokine expression (interleukin-1beta and tumor necrosis factor-alpha) and in situ hybridization studies (bfl1 and glial fibrillary acidic protein) suggest a biphasic inflammatory response, with darglitazone restoring the compromised proinflammatory response(s) in the diabetic mouse at 4 h but suppressing subsequent inflammatory responses at 8 and 24 h in both control and diabetic mice.


Assuntos
Diabetes Mellitus Experimental/imunologia , Hipoglicemiantes/farmacologia , Hipóxia-Isquemia Encefálica/imunologia , Inflamação/imunologia , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Glicemia/análise , Corticosterona/sangue , Diabetes Mellitus Experimental/complicações , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/metabolismo , Hibridização In Situ , Lipoproteínas VLDL/sangue , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , PPAR gama/efeitos dos fármacos , Radioimunoensaio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triglicerídeos/sangue
8.
J Neurochem ; 109 Suppl 1: 207-13, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19393029

RESUMO

The genetic absence epilepsy rat from Strasbourg is considered an isomorphic, predictive, and homologous model of typical childhood absence epilepsy. It is characterized by the expression of spike-and-wave discharges (SWDs) in the thalamus and cortex. The ketogenic diet (KD) is successfully used in humans and animals with various types of seizures, but was not effective in children with intractable atypical absence epilepsy. Here, we studied its potential impact on the occurrence of SWDs in genetic absence epilepsy rat from Strasbourg. Rats were fed the KD for 3 weeks during which they were regularly subjected to the electroencephalographic recording of SWDs. The KD did not influence the number and duration of SWDs despite a 15-22% decrease in plasma glucose levels and a large increase in beta-hydroxybutyrate levels. Likewise, the KD did not affect the level of expression of the blood-brain barrier glucose transporter GLUT1 or of the monocarboxylate transporters, MCT1 and MCT2. This report extends the observation in humans that the KD does not appear to show effectiveness in intractable atypical absence epilepsy to this model of typical childhood absence epilepsy which responds to specific antiepileptic drugs.


Assuntos
Epilepsia Tipo Ausência/dietoterapia , Epilepsia Tipo Ausência/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Animais , Glicemia/metabolismo , Barreira Hematoencefálica/metabolismo , Eletroencefalografia , Glucose/metabolismo , Transportador de Glucose Tipo 1/biossíntese , Transportador de Glucose Tipo 1/metabolismo , Corpos Cetônicos/metabolismo , Masculino , Transportadores de Ácidos Monocarboxílicos/biossíntese , Ratos , Simportadores/metabolismo
9.
J Cereb Blood Flow Metab ; 27(4): 710-8, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16926846

RESUMO

Impaired peripheral wound healing is a hallmark of diabetics pathology and has been attributed to compromised macrophage activation. Stroke is another component of diabetic pathology, with increased tissue infarction and worsened recovery although the mechanisms remain unresolved. In this study, we investigated whether a compromised glial/macrophage response might contribute to cerebral hypoxic-ischemic (H/I) brain damage in diabetic (db/db), relative to their normoglycemic db/+ mice. Hypoxia-ischemia was induced in 8-week-old male db/db and db/+ mice by the ligation of right common carotid artery followed by systemic hypoxia (8% O2: 92% N2) for 17 mins. Mice were killed at specific intervals of reperfusion/recovery and the brains analyzed by in situ hybridization or total RNA isolation. In situ hybridization using bfl-1 (microglia) and glial fibrillary acidic protein (GFAP) (astrocytes) revealed expression of both bfl-1 and GFAP in the ipsilateral hemisphere at 4 h in the db/+ mice, which was delayed and minimal in the db/db mice. RNase protection assays showed a robust increase in expression of the proinflammatory cytokines tumor necrosis factor-alpha (TNFalpha), interleukin-1 IL-1alpha, and IL-1beta mRNA in the db/+ mice at 6 to 8 h of reperfusion peaking at 8 to 12 h; in db/db mice expression was markedly delayed and diminished. Real-time-polymerase chain reaction (RT-PCR) confirmed the reduced and delayed expression TNFalpha, IL-1alpha, IL-1beta, and the growth factors insulin-like growth factor-1 and ciliary neurotrophic factor in the db/db mice; enzyme-linked immunosorbent assays confirmed the reduced and delayed translation of IL-1beta protein. These findings suggest that a compromised inflammatory response may underlie the greater infarct associated with diabetic db/db mice compared with their nondiabetic littermates following a hypoxic/ischemic insult.


Assuntos
Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Hipóxia-Isquemia Encefálica/patologia , Cicatrização/fisiologia , Animais , Astrócitos/fisiologia , Fator Neurotrófico Ciliar/biossíntese , Ensaio de Imunoadsorção Enzimática , Proteína Glial Fibrilar Ácida/biossíntese , Hibridização In Situ , Fator de Crescimento Insulin-Like I/biossíntese , Interleucina-1alfa/biossíntese , Interleucina-1alfa/fisiologia , Interleucina-1beta/biossíntese , Interleucina-1beta/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Antígenos de Histocompatibilidade Menor , Ensaios de Proteção de Nucleases , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/biossíntese
10.
Mol Cell Neurosci ; 25(4): 585-93, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15080888

RESUMO

The role of the K-ATP channel pore-forming subunit Kir6.2 on protection from cerebral hypoxic-ischemic injury was assessed in transgenic mice overexpressing normal Kir6.2 or a dominant negative form (AFA) of this subunit in the forebrain. The resulting mice overexpress either the Kir6.2 or the AFA transgene mainly in the cerebral cortex and hippocampus. The Kir6.2 transgenic mice are resistant to hypoxic-ischemic injury showing a decreased region of cortical damage as compared to the dominant negative AFA and the wild-type mice. Moreover, the overexpression of Kir6.2 allowed an important silencing of the neurons present in forebrain regions thus protecting them from ischemic injury. Interestingly, the phenotype observed in Kir6.2 transgenic mice was observed without increased sulfonylurea binding. Taken together, these results indicate that the transgenic overexpression of Kir6.2 in forebrain significantly protects mice from hypoxic-ischemic injury and neuronal damage seen in stroke.


Assuntos
Infarto Cerebral/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Imunidade Inata/genética , Degeneração Neural/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Prosencéfalo/metabolismo , Potenciais de Ação/genética , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Infarto Cerebral/genética , Infarto Cerebral/fisiopatologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/fisiopatologia , Camundongos , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Neurônios/metabolismo , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Prosencéfalo/patologia , Prosencéfalo/fisiopatologia , Compostos de Sulfonilureia/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...